92 research outputs found

    Clinicoradiological manifestations of paraganglioma syndromes associated with succinyl dehydrogenase enzyme mutation

    Get PDF
    BACKGROUND: Paragangliomas are rare tumours derived from the autonomic nervous system that have increasingly been recognised to have a genetic predisposition. Mutations of the enzyme succinyl dehydrogenase (SDH) have proven to result in paraganglioma formation. There are four subunits (A through D) that form the enzyme complex and are associated with different genophenotypic expressions of disease. SDHB and SDHD mutations are more common, whereas SDHA and SDHC mutations are rare. Patients with SDHB mutations are prone to extra-adrenal pheochromocytomas, malignant disease and extra-paraganglial neoplasia, whereas SDHD mutations have a greater propensity for multiple, benign head and neck paragangliomas. METHODS: Diagnosis of a sporadic paraganglioma or pheochromocytoma should lead to a full genetic workup of the patient and family if SDH mutations are found. RESULTS: Further annual screening will be required depending on the mutation, which can have a significant impact on radiologists and the resources of the radiology department. CONCLUSION: We present our imaging experience with a series of patients with proven SDH mutations resulting in paragangliomas with a review of the literature

    Similar gene expression profiles of sporadic, PGL2-, and SDHD-linked paragangliomas suggest a common pathway to tumorigenesis

    Get PDF
    Contains fulltext : 81540.pdf (publisher's version ) (Open Access)BACKGROUND: Paragangliomas of the head and neck are highly vascular and usually clinically benign tumors arising in the paraganglia of the autonomic nervous system. A significant number of cases (10-50%) are proven to be familial. Multiple genes encoding subunits of the mitochondrial succinate-dehydrogenase (SDH) complex are associated with hereditary paraganglioma: SDHB, SDHC and SDHD. Furthermore, a hereditary paraganglioma family has been identified with linkage to the PGL2 locus on 11q13. No SDH genes are known to be located in the 11q13 region, and the exact gene defect has not yet been identified in this family. METHODS: We have performed a RNA expression microarray study in sporadic, SDHD- and PGL2-linked head and neck paragangliomas in order to identify potential differences in gene expression leading to tumorigenesis in these genetically defined paraganglioma subgroups. We have focused our analysis on pathways and functional gene-groups that are known to be associated with SDH function and paraganglioma tumorigenesis, i.e. metabolism, hypoxia, and angiogenesis related pathways. We also evaluated gene clusters of interest on chromosome 11 (i.e. the PGL2 locus on 11q13 and the imprinted region 11p15). RESULTS: We found remarkable similarity in overall gene expression profiles of SDHD -linked, PGL2-linked and sporadic paraganglioma. The supervised analysis on pathways implicated in PGL tumor formation also did not reveal significant differences in gene expression between these paraganglioma subgroups. Moreover, we were not able to detect differences in gene-expression of chromosome 11 regions of interest (i.e. 11q23, 11q13, 11p15). CONCLUSION: The similarity in gene-expression profiles suggests that PGL2, like SDHD, is involved in the functionality of the SDH complex, and that tumor formation in these subgroups involves the same pathways as in SDH linked paragangliomas. We were not able to clarify the exact identity of PGL2 on 11q13. The lack of differential gene-expression of chromosome 11 genes might indicate that chromosome 11 loss, as demonstrated in SDHD-linked paragangliomas, is an important feature in the formation of paragangliomas regardless of their genetic background.1 p

    The first Dutch SDHB founder deletion in paraganglioma – pheochromocytoma patients

    Get PDF
    Contains fulltext : 81280.pdf (publisher's version ) (Open Access)BACKGROUND: Germline mutations of the tumor suppressor genes SDHB, SDHC and SDHD play a major role in hereditary paraganglioma and pheochromocytoma. These three genes encode subunits of succinate dehydrogenase (SDH), the mitochondrial tricarboxylic acid cycle enzyme and complex II component of the electron transport chain. The majority of variants of the SDH genes are missense and nonsense mutations. To date few large deletions of the SDH genes have been described. METHODS: We carried out gene deletion scanning using MLPA in 126 patients negative for point mutations in the SDH genes. We then proceeded to the molecular characterization of deletions, mapping breakpoints in each patient and used haplotype analysis to determine whether the deletions are due to a mutation hotspot or if a common haplotype indicated a single founder mutation. RESULTS: A novel deletion of exon 3 of the SDHB gene was identified in nine apparently unrelated Dutch patients. An identical 7905 bp deletion, c.201-4429_287-933del, was found in all patients, resulting in a frameshift and a predicted truncated protein, p.Cys68HisfsX21. Haplotype analysis demonstrated a common haplotype at the SDHB locus. Index patients presented with pheochromocytoma, extra-adrenal PGL and HN-PGL. A lack of family history was seen in seven of the nine cases. CONCLUSION: The identical exon 3 deletions and common haplotype in nine patients indicates that this mutation is the first Dutch SDHB founder mutation. The predominantly non-familial presentation of these patients strongly suggests reduced penetrance. In this small series HN-PGL occurs as frequently as pheochromocytoma and extra-adrenal PGL

    Mutation analysis of SDHB and SDHC: novel germline mutations in sporadic head and neck paraganglioma and familial paraganglioma and/or pheochromocytoma

    Get PDF
    BACKGROUND: Germline mutations of the SDHD, SDHB and SDHC genes, encoding three of the four subunits of succinate dehydrogenase, are a major cause of hereditary paraganglioma and pheochromocytoma, and demonstrate that these genes are classic tumor suppressors. Succinate dehydrogenase is a heterotetrameric protein complex and a component of both the Krebs cycle and the mitochondrial respiratory chain (succinate:ubiquinone oxidoreductase or complex II). METHODS: Using conformation sensitive gel electrophoresis (CSGE) and direct DNA sequencing to analyse genomic DNA from peripheral blood lymphocytes, here we describe the mutation analysis of the SDHB and SDHC genes in 37 patients with sporadic (i.e. no known family history) head and neck paraganglioma and five pheochromocytoma and/or paraganglioma families. RESULTS: Two sporadic patients were found to have a SDHB splice site mutation in intron 4, c.423+1G>A, which produces a mis-spliced transcript with a 54 nucleotide deletion, resulting in an 18 amino acid in-frame deletion. A third patient was found to carry the c.214C>T (p.Arg72Cys) missense mutation in exon 4 of SDHC, which is situated in a highly conserved protein motif that constitutes the quinone-binding site of the succinate: ubiquinone oxidoreductase (SQR) complex in E. coli. Together with our previous results, we found 27 germline mutations of SDH genes in 95 cases (28%) of sporadic head and neck paraganglioma. In addition all index patients of five families showing hereditary pheochromocytoma-paraganglioma were found to carry germline mutations of SDHB: four of which were novel, c.343C>T (p.Arg115X), c.141G>A (p.Trp47X), c.281G>A (p.Arg94Lys), and c.653G>C (p.Trp218Ser), and one reported previously, c.136C>T, p.Arg46X. CONCLUSION: In conclusion, these data indicate that germline mutations of SDHB and SDHC play a minor role in sporadic head and neck paraganglioma and further underline the importance of germline SDHB mutations in cases of familial pheochromocytoma-paraganglioma

    Recent advances in the genetics of SDH-related paraganglioma and pheochromocytoma

    Get PDF
    The last 10 years have seen enormous progress in the field of paraganglioma and pheochromocytoma genetics. The identification of the first gene related to paraganglioma, SDHD, encoding a subunit of mitochondrial succinate dehydrogenase (SDH), was quickly followed by the identification of mutations in SDHC and SDHB. Very recently several new SDH-related genes have been discovered. The SDHAF2 gene encodes an SDH co-factor related to the function of the SDHA subunit, and is currently exclusively associated with head and neck paragangliomas. SDHA itself has now also been identified as a paraganglioma gene, with the recent identification of the first mutation in a patient with extra-adrenal paraganglioma. Another SDH-related co-factor, SDHAF1, is not currently known to be a tumor suppressor, but may shed some light on the mechanisms of tumorigenesis. An entirely novel gene associated with adrenal pheochromocytoma, TMEM127, suggests that other new paraganglioma susceptibility genes may await discovery. In addition to these recent discoveries, new techniques related to mutation analysis, including genetic analysis algorithms, SDHB immunohistochemistry, and deletion analysis by MLPA have improved the efficiency and accuracy of genetic analysis. However, many intriguing questions remain, such as the striking differences in the clinical phenotype of genes that encode proteins with an apparently very close functional relationship, and the lack of expression of SDHD and SDHAF2 mutations when inherited via the maternal line. Little is still known of the origins and causes of truly sporadic tumors, and the role of oxygen in the relationships between high-altitude, familial and truly sporadic paragangliomas remains to be elucidated

    Search for Kaluza-Klein Graviton Emission in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy Signature

    Get PDF
    We report on a search for direct Kaluza-Klein graviton production in a data sample of 84 pb1{pb}^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab. We investigate the final state of large missing transverse energy and one or two high energy jets. We compare the data with the predictions from a 3+1+n3+1+n-dimensional Kaluza-Klein scenario in which gravity becomes strong at the TeV scale. At 95% confidence level (C.L.) for nn=2, 4, and 6 we exclude an effective Planck scale below 1.0, 0.77, and 0.71 TeV, respectively.Comment: Submitted to PRL, 7 pages 4 figures/Revision includes 5 figure

    Search for Gluinos and Scalar Quarks in ppˉp\bar{p} Collisions at s=1.8\sqrt{s}=1.8 TeV using the Missing Energy plus Multijets Signature

    Get PDF
    We have performed a search for gluinos (\gls) and squarks (\sq) in a data sample of 84 pb1^{-1} of \ppb collisions at s\sqrt{s} = 1.8 TeV, recorded by the Collider Detector at Fermilab, by investigating the final state of large missing transverse energy and 3 or more jets, a characteristic signature in R-parity-conserving supersymmetric models. The analysis has been performed `blind', in that the inspection of the signal region is made only after the predictions from Standard Model backgrounds have been calculated. Comparing the data with predictions of constrained supersymmetric models, we exclude gluino masses below 195 \gev (95% C.L.), independent of the squark mass. For the case \msq \approx \mgls, gluino masses below 300 \gev are excluded.Comment: 7 pages, 3 figure

    Measurement of the average time-integrated mixing probability of b-flavored hadrons produced at the Tevatron

    Get PDF
    We have measured the number of like-sign (LS) and opposite-sign (OS) lepton pairs arising from double semileptonic decays of bb and bˉ\bar{b}-hadrons, pair-produced at the Fermilab Tevatron collider. The data samples were collected with the Collider Detector at Fermilab (CDF) during the 1992-1995 collider run by triggering on the existence of μμ\mu \mu and eμe \mu candidates in an event. The observed ratio of LS to OS dileptons leads to a measurement of the average time-integrated mixing probability of all produced bb-flavored hadrons which decay weakly, χˉ=0.152±0.007\bar{\chi} = 0.152 \pm 0.007 (stat.) ±0.011\pm 0.011 (syst.), that is significantly larger than the world average χˉ=0.118±0.005\bar{\chi} = 0.118 \pm 0.005.Comment: 47 pages, 10 figures, 15 tables Submitted to Phys. Rev.

    Diffractive Dijet Production at sqrt(s)=630 and 1800 GeV at the Fermilab Tevatron

    Get PDF
    We report a measurement of the diffractive structure function FjjDF_{jj}^D of the antiproton obtained from a study of dijet events produced in association with a leading antiproton in pˉp\bar pp collisions at s=630\sqrt s=630 GeV at the Fermilab Tevatron. The ratio of FjjDF_{jj}^D at s=630\sqrt s=630 GeV to FjjDF_{jj}^D obtained from a similar measurement at s=1800\sqrt s=1800 GeV is compared with expectations from QCD factorization and with theoretical predictions. We also report a measurement of the ξ\xi (xx-Pomeron) and β\beta (xx of parton in Pomeron) dependence of FjjDF_{jj}^D at s=1800\sqrt s=1800 GeV. In the region 0.035<ξ<0.0950.035<\xi<0.095, t<1|t|<1 GeV2^2 and β<0.5\beta<0.5, FjjD(β,ξ)F_{jj}^D(\beta,\xi) is found to be of the form β1.0±0.1ξ0.9±0.1\beta^{-1.0\pm 0.1} \xi^{-0.9\pm 0.1}, which obeys β\beta-ξ\xi factorization.Comment: LaTeX, 9 pages, Submitted to Phys. Rev. Letter
    corecore